Richter ausgekleidete ISO/DIN und ASME/ANSI Gleitringdichtungspumpen

Korrosive, feststoffhaltige und hochreine Medien

PFA/PTFE-Auskleidung ohne Füllstoffe Alle handelsüblichen Gleitringdichtungen Sehr einfache Wartung

Richter ausgekleidete ISO/DIN und ASME/ANSI Gleitringdichtungspumpen

Einsatzgebiete

Förderung korrosiver Medien in Chemie, Pharma, Petrochemie, Zellstoff, Metallindustrie, Lebensmitteltechnik und Entsorgung/Recycling.

Die Baureihen RSI und RSA wurden entwickelt

- für den Einsatz bei Medien, wo Edelstahl und konventionelle Kunststoffe nicht ausreichend korrosionsbeständig sind
- als Alternative zu
 - Gleitringdichtungspumpen aus teuren Metallen mit langen Lieferzeiten (Alloy-C, Titan, Nickel etc.),
 - Vollkunststoff- und faserverstärkten Pumpen,
 - und Gleitringdichtungspumpen aus Edelstahl und Sondermetallen (z. B. Eisensiliziumguss)

Bauart

Fluorkunststoffausgekleidete, einstufige Gleitringdichtungs-Kreiselpumpen.

Abmessungen und Nennleistung nach ISO/EN 2858/5199 bzw. ASME/ANSI B73.1. ATEX 94/9/EG.

Typenschlüssel

- Normbauweise ISO/DIN
- RSI/F RSA/F
- Normbauweise ASME/ANSI
- Auskleidung: Perfluoralkoxy (PFA)

Einsatzbereich

 50 Hz-Betrieb
 60 Hz-Betrieb

 0,1-100 m³/h*
 0,1-120 m³h*

 bis 70 m FS*
 bis 100 m FS*

- -30 °C bis 150 °C; max. 20 bar
- Förderung von Medien mit Feststoffanteilen, abhängig von Anteil, Form, Härte und Größe der Feststoffpartikel. Informationen auf Anfrage.
- * Für größere Fördermengen, höhere Temperaturen und andere anwendungsspezifische Optionen siehe die folgenden Richter Pumpen-Baureihen:
 - Gleitringdichtungs-Prozesspumpen Baureihe SCK (ISO/DIN)
 - Magnetkupplungspumpen MNK (ISO/DIN) und MNKA (ASME/ANSI)

Leistungsmerkmale und Vorteile

Fluorkunststoffausgekleidete Gleitringdichtungs-Prozesspumpen sind optimal für die Förderung hochkorrosiver Medien ohne Kompromisse hinsichtlich Qualität, Material und Wirkungsgrad geeignet.

Richter PFA-ausgekleidete Pumpen bewähren sich seit Jahrzehnten ausgezeichnet in den anspruchsvollsten Anwendungen im Bereich der chemischen Verfahrenstechnik.

Die Gleitringdichtungspumpen RSI und RSA überzeugen durch

- Reine PFA-Auskleidung ohne Füllstoffe Auskleidung in höchster Qualität mit gleichmäßiger Wanddicke
 - Höchste chemische Beständigkeit, besser als ETFE (z. B. Tefzel®) und PVDF
 - Temperaturen bis 150 °C
 - Volle FDA-Konformität
 - Neutralität bei reinen Medien in Pharma-, Feinchemieund anderen Anwendungen
 - Hervorragende Diffusionsbeständigkeit
 - Wanddicke 5-6 mm im Gehäuse
 - Vakuumfest verankerte Auskleidung von Gehäuse, Laufrad und Gehäusedeckel: Richter wendet ausschließlich das "TM Transfermoulding-Verfahren" (nicht das so genannte Rotomoulding-Verfahren) an. Indexierbohrungen auf der Gussteilaußenseite sichern eine einheitliche Dicke der Auskleidung: sehr wichtig für hohe Diffusionsbeständigkeit und Verschleißreserven.

② Robuste Konstruktion für Maßhaltigkeit auch bei hohen Temperaturen

- Vollflächige Sphäroguss-Panzerung nimmt Rohrleitungskräfte auf und erübrigt den Einbau von Kompensatoren
- Laufrad und Gehäusedeckel mit großem Metallkern
- Stabile Pumpenwelle aus hochwertigem Edelstahl und minimale Auskragung für besonders geringe Wellendurchbiegung

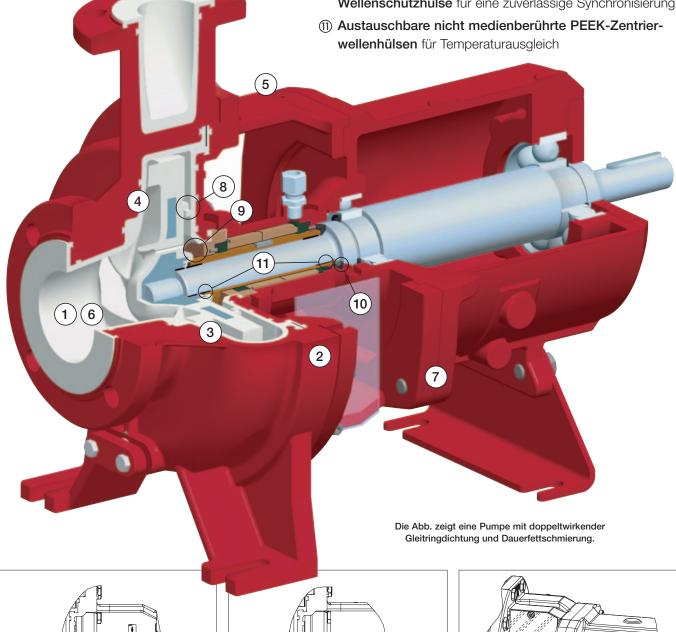
③ Durchdachte Laufradkonstruktion: Gleichmäßiger Lauf auch unter kritischen Lastbedingungen

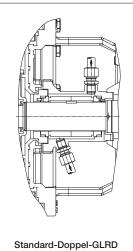
- Halboffene Laufradausführung für Fördermengenoptimierung
- Entlastungsbohrungen, Drosselring und Rückschaufeln sorgen für minimale Schublasten.

(4) Minimale Lebenszykluskosten

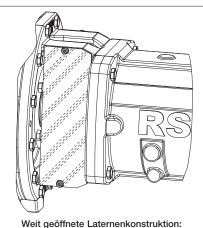
- Konstruktion mit hohem Wirkungsgrad
- Niedriger NPSH-Wert
- Hohe Flexibilität durch universelle Korrosionsbeständigkeit

(5) Einfache Wartung

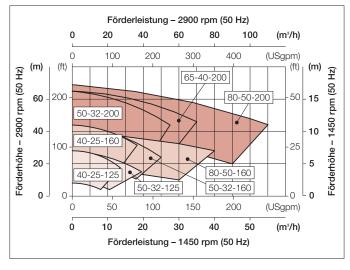

- "Back Pull-Out"-Konstruktion für einfachste Wartung
- Ausführung mit weit offener Laterne für vollen Einblick und einfachen Zugriff auf Gleitringdichtung
- Wenige Bauteile: eine wartungsfreundliche Pumpe
- (6) Förderung von Medien mit Feststoffanteilen möglich siehe (8) und (9), Informationen auf Anfrage.



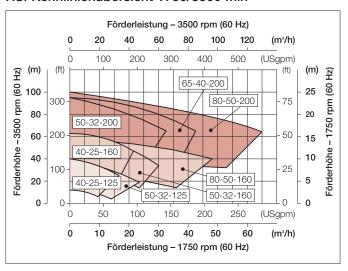
PFA-Auskleidung ohne Füllstoffe für höchste Korrosionsbeständigkeit und Neutralität gegenüber hochreinen Medien


7 Hochwertiger äußerer Korrosionsschutz

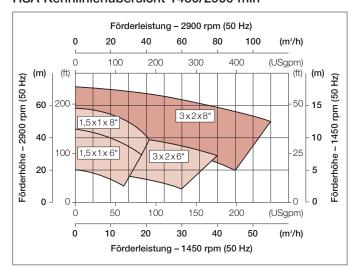
- Dicke äußere 2-Komponenten-Epoxybeschichtung
- Schrauben aus Edelstahl, andere Güteklassen optional
- (8) **Drosselring** verringert den Axialschub und hält den Dichtungsraum frei von größeren Feststoffen, siehe Seite 5
- Der konische Dichtungsraum unterstützt das Freispülen der Gleitflächen
- Formschlüssige Verbindung zwischen Pumpenwelle und Wellenschutzhülse für eine zuverlässige Synchronisierung

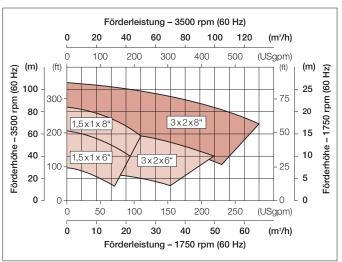

Weit geöffnete Laternenkonstruktion: Voller Einblick und einfacher Zugriff in den Dichtungsraum. Abb. zeigt durchsichtigen, montierten Spritzschutz

Kennlinienübersichten


Richter Gleitringdichtungs-Pumpen RSI (ISO/DIN) und RSA (ASME/ANSI) sind lieferbar für Förderleistungen

- bis 100 m³/h und bis 70 m FS bei 2900 min⁻¹
- bis 120 m³/h und bis 100 m FS bei 3500 min⁻¹


RSI Kennlinienübersicht 1450/2900 min-1


RSI Kennlinienübersicht 1750/3500 min-1

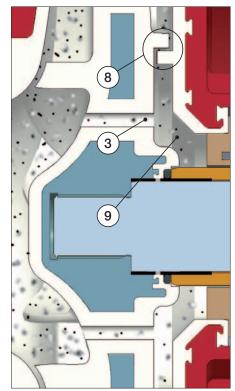
RSA Kennlinienübersicht 1450/2900 min⁻¹

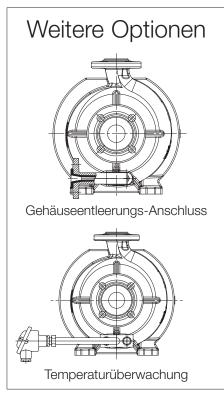
RSA Kennlinienübersicht 1750/3500 min⁻¹

Fördermengen und -höhen außerhalb dieses Leistungsbereichs können abgedeckt werden mit

- Richter Gleitringdichtungs-Pumpen SCK bis 300 m³/h
- Richter Magnetkupplungs-Pumpen MNK/MNKA bis 600 m³/h

Verbesserte Förderung von Medien mit Feststoffanteilen


Standardmäßig sind die RSI- und RSA-Baureihen ausgestattet mit


(8) labyrinth-ähnlichen Drosselringen:

Die Drosselringe verhindern, dass größere Feststoffanteile im Medium in den Dichtungsraum hinter dem Laufrad eindringen und verringern den Axialschub.

Der Dichtungsraum wird durchspült, wodurch Feststoffe von den Gleitflächen ferngehalten werden. Durch gezielte Differenzdrücke werden die Feststoffe durch die Entlastungsbohrungen des Laufrads ③ abgeführt.

Vorteile der Richter Gleitringdichtungspumpe: Höchste Korrosionsfestigkeit, niedrige Kosten, kurze Lieferzeit

- Gegenüber Gleitringdichtungspumpen aus korrosionsfesten Metallen (Duplex, Hastelloy® Titan, Nickel)
 - Wesentlich niedrigere Beschaffungskosten: nur 40-60 % gegenüber Nickel und Titan
 - Wesentlich kürzere Standardlieferzeiten (nur 5 Wochen statt 12-25 Wochen)
 - Höchste und universelle Korrosionsfestigkeit: Signifikant besser als Duplex, Hastelloy® und sogar als Titan und Nickel

Richter Pumpen RSI/RSA sind nicht nur höher korrosionsbeständig (Blasengröße), sondern gleichzeitig wesentlich schneller lieferbar (X-Achse) und preisgünstiger (Y-Achse). Mit dieser Kombination an Vorteilen ist die RSI/RSA ideal als Standardpumpe für korrosive Einsätze geeignet und erübrigt das Arbeiten mit unterschiedlichen Fabrikaten und Werkstoffausführungen.

Gegenüber Vollkunststoffund teilgepanzerten Pumpen

- Wesentlich größerer Druck-Temperaturbereich bis 150 °C und 16 bar (statt nur bis 120 °C und 10 bar)
- Extrem robust dank metallischer Panzerung: ruhiger Lauf auch bei höheren Belastungen
- Trägt alle Rohrleitungskräfte, Kompensatoren entfallen

Bauteile und Werkstoffe

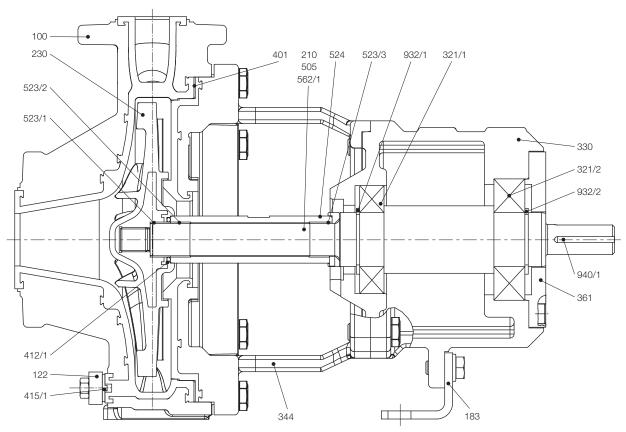


Abb.: Ausführung Dauerfettschmierung Gleitringdichtung: nicht abgebildet

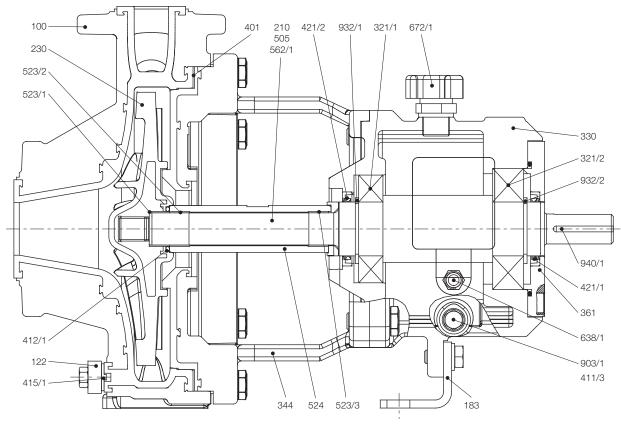
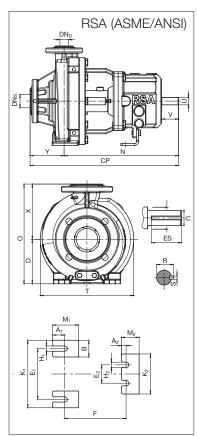


Abb: Ausführung Ölbadschmierung Gleitringdichtung: nicht abgebildet



Bauteile und Werkstoffe

Pos.	Benennung	Werkstoff							
100	Gehäuse	Sphäroguss EN-JS 1049/ASTM A395, PFA-Auskleidung							
122	Blinddeckel	Stahl							
183	Stützfuß	Stahl							
210	Welle (inkl. 505, 562/1)	Edelstahl							
230	Laufrad	PFA (Kern Sphäroguss)							
321/x	Radialkugellager	Fettschmierung, optional Ölbadschmierung							
330	Lagerträger	Sphäroguss EN-JS 1049/ASTM A395							
344	Laterne	Sphäroguss EN-JS 1049/ASTM A395							
361	Endlagerdeckel	Stahl							
401	Gehäusedichtung	PTFE							
411/3	Dichtring								
412/1	O-Ring	Aramid®, FFKM (Kalrez® oder ähnlich)							
415/1	Zentrierdichtung	PTFE							
421/x	Radialwellendichtring	FPM (nur bei Ölbadschmierung)							
523/x	Wellenhülse (nicht mediumberührt)	PEEK							
524	Wellenschutzhülse	Al ₂ O ₃ (Aluminiumoxid, 99,7%), andere Werkstoffe auf Anfrage							
638/1	Ölstandsregler	Nur bei Ölbadschmierung							
672/1	Entlüft- und Füllstutzen	Nur bei Ölbadschmierung							
903/1	Verschlussschraube	Edelstahl (nur bei Ölbadschmierung)							
932/x	Sicherungsring	PTFE							
940/1	Passfeder	Stahl							
o. Nr.	Schrauben, Muttern	Edelstahl, andere Güteklassen optional							

Abmessungen und Gewichte

RSI Pumpenabmessungen in mm (inch)

	Pumpen-														Gewic	ht ca.	
Gr.	größe	DN _S	DN_D	а	В	d ₂	f	h ₁	h ₂	L	1	GA	F	LP	kg	lbs	
1.1	40-25-125	40 (1,57)	25 (0,98)	00 (0.15)	00 (0.15)	040 (0.45)	24 (0,94)	205 (45 40)	112 (4,41)	140 (5 51)	465 (18,31)	50 (1,97)	27 (1,06)	8 (0,31)	36 (1,42)	36	79
1.1	50-32-125	50 (1,97)	32 (1,26)	80 (3,15)	240 (9,45)	24 (0,94)	385 (15,16)	112 (4,41)	140 (5,51)	403 (10,31)	50 (1,97)	21 (1,00)	0 (0,31)	30 (1,42)	38	84	
	40-25-160	40 (1,57)	25 (0,98)	00 (2.15)			` ' /	120 /5 0\	2) 160 (6,3)	465 (18,31)			8 (0,31)	36 (1,42)	44	97	
1.2	50-32-160	50 (1,97)	32 (1,26)	80 (3,15)	280 (11,02)	24 (0,94)		132 (3,2)			50 (1,97)	27 (1,06)			46	101	
	80-50-160	80 (3,15)	50 (1,97)	100 (3,94)				160 (6,3)	180 (7,09)						51	112	
	50-32-200	50 (1,97)	32 (1,26)	80 (3,15)					180 (7,09)	465 (18,31)			8 (0,31)	36 (1,42)	65	143	
1.3	65-40-200	65 (2,56)	40 (1,57)	100 (2.04)	330 (13)	24 (0,94)	385 (15,16)	` ' /		405 (40.4)	50 (1,97)	27 (1,06)			69	152	
	80-50-200	80 (3,15)	50 (1,97)	100 (3,94)					200 (7,87)	485 (19,1)					71	157	

RSI Pumpenfußabmessungen in mm (inch)

Gr.	Pumpengröße	b	m ₁	m ₂	m ₃	m ₄	n ₁	n ₂	n ₃	n ₄	S ₁	S ₂	w
1.1	40-25-125	E0 (1 07)	04 (2.7)	E0 (1 07)	E0 /1 07\	19 (0,75)	190 (7,5)	140 (5,51)	110 (4,33)	1.45 (5.71)	14 (0,55)	14 5 (0 57)	00E (11 0)
1.1	50-32-125	50 (1,97)	94 (3,7)	50 (1,97)	50 (1,97)		190 (7,5)			145 (5,71)	14,5 (0,57)	14,5 (0,57)	285 (11,2)
	40-25-160						240 (9,45)	190 (7,5)					
1.2	50-32-160	50 (1,97)	100 (3,94)	70 (2,76)	50 (1,97)	19 (0,75)	240 (9,43)	190 (7,3)	110 (4,33)	145 (5,71)	14,5 (0,57)	14,5 (0,57)	285 (11,2)
	80-50-160						265 (10,43)	212 (8,35)					
	50-32-200	50 (1,97) 10			50 (1,97)	19 (0,75)	240 (9,45)	190 (7,5)					
1.3	65-40-200		100 (3,94)	70 (2,76)			005 (40, 40)	010 (0.05)	110 (4,33)	145 (5,71)	14,5 (0,57)	14,5 (0,57)	285 (11,2)
	80-50-200						265 (10,43)	212 (8,35)					

RSA Pumpenabmessungen in mm (inch)

	Pumpen-														Gewic	ht ca.
Gr.	größe	DN _S	DN_D	Υ	Т	U	N	D	Х	CP	V	R	S	ES	kg	lbs
	1,5 x 1 x 6"	38,1 (1,5)	25,4 (1)												42	92
1	3 x 2 x 6"	76,2 (3)	50,8 (2)	102 (4,02)	280 (11,02)	22,3 (0,87)	343 (13,5)	133 (5,25)	165 (6,5)	445 (17,52)	51 (2)	24,3 (0,96)	4,8 (0,19)	44,5 (1,75)	47	103
	1,5 x 1 x 8"	38,1 (1,5)	25,4 (1)		290 (11,4)										45	99
2	3 x 2 x 8"	76,2 (3)	50,8 (2)	102 (4,02)	330 (13)	28,6 (1,13)	495 (19,5)	210 (8,25)	242 (9,5)	597 (23,5)	82 (3,23)	31,4 (1,24)	6,35 (0,25)	57,2 (2,25)	82	181

RSA Pumpenfußabmessungen in mm (inch)

Gr.	Pumpengröße	В	M ₁	A ₁	M_2	A ₂	K ₁	E ₁	E ₂	K ₂	H ₁	H ₂	F
	1,5 x 1 x 6"		78 (3,07)	36 (1,42)	43 (1,69)	14 (0,55)	202,4 (7,97)	152,4 (6)	0	100 (3,94)	16 (0,63)	16 (0,63)	184 (7,25)
1	3 x 2 x 6"	50 (1,97)	83 (3,27)	41 (1,61)									
	1,5 x 1 x 8"		78 (3,07)	36 (1,42)									
2	3 x 2 x 8"	50 (1,97)	83 (3,27)	41 (1,61)	54 (2,13)	25 (0,98)	298 (11,7)	248 (9,76)	184 (7,25)	220 (8,66)	16 (0,63)	16 (0,63)	318 (12,5)

Druckschrift Nr. 682de 02.11 © Richter Chemie-Technik GmbH. Änderungen vorbehalten. Printed in Germany. Richter = TM Richter Chemie-Technik GmbH. Kalrez®, Aramid®, Tefze® = TM of DuPont

Weitere Richter Prozesspumpen

Richter Magnetkupplungs- und Gleitringdichtungspumpen werden ebenso wie die Richter Absperr-, Regel- und Sicherheitsarmaturen in den unterschiedlichsten chemischen und artverwandten Prozessen eingesetzt. Auch speziellere Pumpenbauarten sind Teil dieses Programms. So kann der Anlagenbetreiber selbst bei schwierigen Einsatzfällen auf Pumpen von Richter zurückgreifen.

Magnetkupplungspumpen

- gemäß EN 22858/ISO 2858 bis 600 m³/h
- gemäß ASME B73.3 bis 180 m³/h

Gleitringdichtungspumpen

gemäß EN 22858/ISO 2858 bis 300 m³/h

Selbstansaugende Pumpen

zur Entleerung von Behältern und Becken von oben. Saughöhe bis 6 m FS, bis 33 m³/h

Freistrompumpen

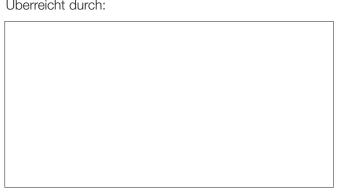
für feststoffhaltige Medien mit größeren und faserigen Partikeln und für Medien mit erhöhtem Gasgehalt, bis 200 m³/h

Peripheralpumpen

für kleine Fördermengen bei großen Förderhöhen, 0,1-5 m³/h und bis 100 m FS.

Richter PFA/PTFE-ausgekleidete Armaturen als ideale Pumpen-Ergänzung

Die korrosionsfesten Pumpen erfüllen ihre Aufgaben im Zusammenspiel mit Richter Armaturen noch besser. Diese sind erhältlich gemäß ISO/DIN und ASME/ANSI für Betriebsdrücke bis 19 bar (275 psi) und Temperaturen von -60 °C bis 200 °C.



Überreicht durch:

Richter Chemie-Technik GmbH

Otto-Schott-Str. 2, D-47906 Kempen, Germany Tel. +49 (0) 21 52/146-0, Fax +49 (0) 21 52/146-190 www.richter-ct.com, richter-info@idexcorp.com